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1

SYSTEM FOR MANAGING ENERGY,
METHOD OF MANAGING ENERGY, AND
METHOD OF PREDICTING ENERGY
DEMAND

BACKGROUND OF THE INVENTION
1. Field of the Invention

The present invention relates to a technology for manag-
ing energy.

2. Description of the Prior Art

As an energy demand currently increases rapidly, a power
shortage phenomenon has become serious. In order to
resolve the power shortage phenomenon, electricity genera-
tion and power transmission and distribution facilities have
been additionally installed causing social costs to sharply
increase, and so an expansion of supply of power is delayed.
Accordingly, the government is switching an energy policy
from a past supply-centered policy to a demand-centered
policy.

A power demand management corresponds to a method of
changing power use patterns of consumers to minimize the
costs and stably meet the power demand. The power demand
management may be divided into a demand reaction and
increasing an energy usage rate. When the power demand
management is applied to a building, home, or factory, a
large effect thereof may appear.

As various smart grid technologies such as new renewable
energy including sunlight and the like, an LED lighting, an
Energy Storage System (ESS), an electronic car, a smart
meter, and the like are recently introduced to a building, a
market demand for a Building Energy Management System
(BEMS), a Home Energy Management System (HEMS),
and a Factory Management System (FMS) to control power
consumption of the building technology through an inte-
grated operation thereof has increased.

However, the conventional BEMS, HEMS, and FEMS
adopt a centralized integrated control type and thus cannot
reflect an environment difference between detailed zones.

For example, when applying a demand reaction incentive
policy, the conventional technology applied a single demand
reaction incentive policy to an entire area (an entire com-
munity area or an entire building area). However, there may
be an environmental difference between the detailed zones
and tendencies of users living in the corresponding zones, so
that the single demand reaction incentive policy cannot
achieve an overall high-level result. Further, when the
system increases compulsion and responds to the demand
reaction, user convenience may deteriorate.

Since the conventional BEMS, HEMS, and FEMS adopt
the centralized integrated control type, the BEMS, HEMS,
and FEMS cannot smoothly handle failure of some elements
and also should fix the system whenever a new element is
added.

Such a centralized integrated type manages and controls
whole elements through a single Energy Management Sys-
tem (EMS) algorithm. Specifically, the type controls blocks
having different power consumption patterns through a
single EMS algorithm, and thereby cannot optimize supply
and demand of energy according to each power consumption
pattern.

The centralized integrated control type cannot effectively
manage a local load change generated in each zone of the
building.
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The centralized integrated control type requires modifi-
cations of the whole EMS and recompilation whenever a
device is added or removed, thereby increasing a mainte-
nance cost.

The centralized integrated control type is insufficient to
reflect a present condition of occupancy of an occupant, an
energy use pattern, and convenience.

SUMMARY OF THE INVENTION

Based on such a background, in accordance with an aspect
of the present invention, the present invention has been
made to provide an Energy Management System (EMS)
technology that reflects various (energy) environments for
each zone of the building.

In accordance with another aspect of the present inven-
tion, the present invention has been made to provide an EMS
technology which does not degrade reliability of a total
system in spite of some failure.

In accordance with another aspect of the present inven-
tion, the present invention has been made to provide an EMS
technology in which plug & play of the device is possible.

In accordance with another aspect of the present inven-
tion, the present invention has been made to provide an EMS
technology which reflects a present condition of occupancy
of an occupant, an energy use pattern, and convenience.

In accordance with another aspect of the present inven-
tion, the present invention has been made to provide an
energy management system for optimally determining user
convenience and energy costs according to each zone of the
building.

In accordance with another aspect of the present inven-
tion, the present invention has been made to provide a
technology for solving the problem of the conventional
top-down type (a centralized integrated control type) and
reflecting an independent energy management policy of each
zone to determine an energy management policy of the
entire area.

According to an aspect of the present invention in order
to achieve the above described objective, a system for
managing energy of a community in which at least one
building having at least one divided zone is located is
provided. The system includes: at least one zone agent for
acquiring environment data of each zone from a sensor
network installed in each zone, acquiring device energy
usage data of an energy device and a personal device
operating in each zone, and managing physical information
of each zone; a machine learning device for generating
occupant estimation information of each zone through a first
machine learning model including temperature data and CO,
data of the environment data and the device energy usage
data of the personal device as input data, generating zone
energy demand prediction data of each zone through a
second machine learning model including the occupant
estimation information, the environment data, the device
energy usage data of the energy device and the personal
device, and the physical information of each zone as input
data, and transmitting the generated occupant estimation
information and zone energy demand prediction data to the
zone agent, wherein the zone agent manages energy of each
zone based on the zone energy demand prediction data
received for each zone.

According to another aspect of the present invention, a
method of managing energy of a community in which at
least one building having at least one divided zone is located
is provided. The method includes: acquiring environment
data of each zone from a sensor network installed in each
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zone, acquiring device energy usage data of an energy
device and a personal device operating in each zone, and
acquiring physical information of each zone; calculating a
number of occupants in each zone through a first machine
learning model including temperature data and CO, data of
the environment data and the device energy usage data of the
personal device as input data, and generating zone energy
demand prediction data of each zone through a second
machine learning model including the occupant estimation
information, the environment data, the device energy usage
data of the energy device and the personal device, and the
physical information of each zone as input data; and man-
aging energy of each zone based on the zone energy demand
prediction data.

According to another aspect of the present invention, a
method of predicting an energy demand for a community in
which at least one building divided into at least one zone
exists is provided. The method includes: calculating a num-
ber of occupants in each zone through a first machine
learning model including CO, data of each zone as input
data; generating zone energy demand prediction data of each
zone through a second machine learning model including the
number of occupants, environment data of each zone, and
device energy usage data as input data; generating building
energy demand prediction data of each building through a
third machine learning model including zone energy demand
prediction data of each zone and state information of a
building device, which does not belong to each zone, as
input data; and generating community energy demand pre-
diction data of the community through a fourth machine
learning model including building energy demand predic-
tion data of each building and state information of a com-
munity device, which does not belong to each building, as
input data.

According to the present invention as described above,
the EMS device can reflect various (energy) environments
for each zone of a building, a reliability of a total system
does not deteriorate even though a partial failure is gener-
ated, plug & play of the device is possible, and a present
condition of occupancy of an occupant, an energy use
pattern, and convenience can be reflected. Further, according
to the present invention, it is possible to provide an energy
management system technology for optimally determining
user convenience and energy costs for each zone of the
building. In addition, according to the present invention, it
is possible to solve the problem of the conventional top-
down type (a centralized integrated control type) and reflect
an independent energy management policy of each zone to
determine an energy management policy of the entire area.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and other objects, features and advantages of
the present invention will be more apparent from the fol-
lowing detailed description taken in conjunction with the
accompanying drawings, in which:

FIG. 1 is a conceptual diagram illustrating an energy
management system according to an embodiment;

FIG. 2 illustrates a hierarchical structure of the commu-

nity;

FIG. 3 is a block diagram illustrating a community level
system,

FIG. 4 is a block diagram illustrating a building level
system,

FIG. 5 is a block diagram illustrating a zone level system;
FIG. 6 is a flowchart illustrating a method of predicting an
energy demand according to an embodiment.
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FIG. 7 is a block diagram illustrating a first machine
learning model for predicting the number of occupants;

FIG. 8 is a flowchart illustrating a method of predicting
the number of occupants in each zone;

FIG. 9 is a block diagram illustrating a second machine
learning model for predicting an energy demand for each
zone;

FIG. 10 is a flowchart illustrating a method of predicting
an energy demand for each zone;

FIG. 11 is a block diagram illustrating a third machine
learning model for predicting an energy demand for each
building;

FIG. 12 is a flowchart illustrating a method of predicting
an energy demand for each building;

FIG. 13 is a block diagram illustrating a fourth machine
learning model for predicting a community energy demand;

FIG. 14 is a flowchart illustrating a method of predicting
a community energy demand;

FIG. 15 is a flowchart illustrating a method of optimizing
energy according to an embodiment;

FIG. 16 illustrates a process of determining a community
demand reaction incentive policy in an energy management
system according to an embodiment;

FIG. 17 illustrates a process for optimization at a com-
munity level according to an embodiment;

FIG. 18 is a block diagram illustrating a community-
optimized machine learning model according to an embodi-
ment;

FIG. 19 is a flowchart illustrating a method of generating
a community optimal control scenario according to an
embodiment;

FIG. 20 illustrates a process for optimization at a building
level according to an embodiment;

FIG. 21 is a block diagram illustrating a building-opti-
mized machine learning model according to an embodiment;

FIG. 22 is a flowchart illustrating a method of generating
an optimal control scenario for a building according to an
embodiment;

FIG. 23 is a block diagram illustrating a zone-optimized
program for generating an optimal control scenario for each
zone according to an embodiment;

FIG. 24 is a flowchart illustrating a method of generating
an optimal control scenario for each zone according to an
embodiment;

FIG. 25 is a flowchart illustrating a method of managing
energy according to another embodiment;

FIG. 26 is a flowchart illustrating a method of predicting
an energy demand according to another embodiment;

FIG. 27 is a block diagram illustrating the inside of an
xEMA; and

FIG. 28 is a block diagram illustrating in detail the layer
management device of FIG. 27.

DETAILED DESCRIPTION OF THE
EXEMPLARY EMBODIMENTS

Hereinafter, embodiments of the present invention will be
described in detail with reference to the accompanying
drawings. In the following description, the same compo-
nents will be designated by the same reference numerals
although they are shown in different drawings. Further, in
the following description of the present invention, a detailed
description of known functions and configurations incorpo-
rated herein will be omitted when it may make the subject
matter of the present invention rather unclear.

In addition, terms, such as first, second, A, B, (a), (b) or
the like may be used herein when describing components of
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the present invention. These terms are merely used to
distinguish one structural element from other structural
elements, and a property, an order, a sequence and the like
of a corresponding structural element are not limited by the
term. It should be noted that if it is described in the
specification that one component is “connected,” “coupled”
or “joined” to another component, a third component may be
“connected,” “coupled,” and “joined” between the first and
second components, although the first component may be
directly connected, coupled or joined to the second compo-
nent.

FIG. 1 is a conceptual diagram illustrating an energy
management system according to an embodiment.

Referring to FIG. 1, an energy management system 100
includes a community system and a cloud system.

The community system includes at least one agent device
110 and the cloud system includes at least one machine
learning device 120.

The agent device 110 generates measured data from
various sensors and meters located within a community
space and then transmits the generated measured data to the
machine learning device 120 through a network. Further, the
agent device 110 includes a User Interface (UI) device and
transmits set information acquired from a user to the
machine learning device 120 through the UI device.

The machine learning device 120 generates predicted data
and optimized data through a machine learning model that
uses the measured data and the set information received
from the agent device 110 as input data and transmits the
generated predicted data and optimized data to the agent
device 110.

The agent device 110 manages community energy based
on the predicted data and the optimized data received from
the machine learning device 120.

In the community, the agent device 110 may be hierar-
chically disposed, and the agent device 110 disposed on each
layer may transmit and receive information while indepen-
dently communicating with the machine learning device
120.

A Thierarchical structure of the community will be
described with reference to FIGS. 2 to 5.

FIG. 2 illustrates a hierarchical structure of the commu-
nity.

Referring to FIG. 2, a Community Energy Management
Agent (CEMA) is located at a highest community level, and
at least one Building Energy Management Agent (BEMA)
connected to the CEMA is located at a next building level.
Further, at least one Zone Energy Management Agent
(ZEMA) connected to each BEMA is located at a next zone
level, and an energy device, for example, an HAVC device,
a lighting device, or the like, a personal device, for example,
a Personal Computer (PC), or the like, a meter, a sensor, and
the like located at a lowest sensor network level is located
in each ZEMA.

FIG. 3 is a block diagram illustrating a community level
system.

Referring to FIG. 3, at least one building 310 is located in
the community. Further, the community may include com-
munity devices, which do not belong to the building 310, for
example, a community load 320 such as a street lamp, a
traffic signal system, and the like. The community corre-
sponds to a community device and may include a commu-
nity distributed power supply 330, a community Energy
Storage System (ESS) 340, a community Electric Vehicle
(EV) charging station 350, and the like.

The community may include all the aforementioned com-
munity devices such as the community load 320, the com-
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munity distributed power supply 330, the community ESS
340, and the community EV charging station 350 or may
include at least one community device thereof.

A community agent (CEMA) for managing total commu-
nity energy is located in the community. The CEMA is
connected to the BEMA located in each building 310 and
manages each BEMA. Further, the CEMA is connected to
the community devices 320, 330, 340, and 350, which do not
belong to each building, and acquires state information of
each of the community devices 320, 330, 340, and 350 and
controls each of the community devices 320, 330, 340, and
350.

FIG. 4 is a block diagram illustrating a building level
system.

Referring to FIG. 4, each building is divided into at least
one zone 410.

A person who constructs the energy management system
according to an embodiment may divide each building into
a plurality of thermal zones. The thermal zone may refer to
a zone in which a thermal energy device, for example, a
cooling and heating device is independently controlled.
Different thermal zones may be controlled in different ther-
mal states. For example, a first thermal zone may be con-
trolled to have an indoor temperature of 23 degrees, and a
second thermal zone may be controlled to have an indoor
temperature of 28 degrees.

Building devices, which do not belong to each zone 410,
may be included in the building. For example, the building
may include a building load 420 such as an elevator load or
the like, a building distributed power supply 430, a building
ESS 440, a building EV charging station 450, and the like.

A building agent (BEMA) for managing total building
energy is located in the building. Further, the BEMA is
connected to a zone agent (ZEMA) located in each zone 410
and manages each ZEMA. The BEMA is connected to
building devices 420, 430, 440, and 450, which do not
belong to each zone, and acquires state information of each
of the building devices 420, 430, 440, and 450 and controls
each of the building devices 420, 430, 440, and 450.

FIG. 5 is a block diagram illustrating a zone level system.

Referring to FIG. 5, energy devices 312 and 314, and a
personal device 316 may be located in each zone.

The personal device 316 is an electronic device in which
an individual characteristic is reflected and, for example, a
Personal Computer (PC), a standing lamp on a table, and the
like belong to the personal device 316. The energy devices
312 and 314 are electronic devices, which do not belong to
the personal device 316, and mainly control an environment
of each zone. For example, the Heating, Ventilation, Air
Condition (HVAC) device 312 and the lighting device 314
belong to the energy devices.

A plurality of sensors are located in each zone and
constitute a sensor network. For example, a temperature
sensor 520, a CO, sensor 530, a humidity sensor 540, an
illumination sensor 550, and the like may be located in each
zone.

The zone agent (ZEMA) for managing total zone energy
is located in the zone. Further, the zone agent (ZEMA) may
acquire environment data from the sensors 520, 530, 540,
and 550 and acquire device energy usage data from the
energy devices 312 and 314, and the personal device 316.

The energy management system predicts an energy
demand by using the hierarchical structure of the commu-
nity.

FIG. 6 is a flowchart illustrating a method of predicting an
energy demand according to an embodiment.
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Referring to FIG. 6, an energy demand for each zone is
first predicted in S602.

The zone agent (ZEMA) located in each zone transmits
the environment data acquired from the sensor network and
the device energy usage data acquired from the electronic
device to the machine learning device and receives zone
energy demand prediction data.

When the energy demand for each zone is predicted, an
energy demand for each building is then predicted in S604.

The building agent (BEMA) located in each building
transmits the zone energy demand prediction data for each
zone and state information of building devices, which do not
belong to each zone, to the machine learning device and
receives building energy demand prediction data.

When the energy demand for each building is predicted,
an energy demand for the whole community is then pre-
dicted in S606.

The community agent (CEMA) transmits the building
energy demand prediction data for each building and state
information of community devices, which do not belong to
each building, to the machine learning device and receives
community energy demand prediction data.

The energy management system may predict an energy
demand of each zone through the hierarchical structure.

The method of predicting the energy demand in each layer
will be described in more detail.

FIG. 7 is a block diagram illustrating a first machine
learning model for predicting the number of occupants, and
FIG. 8 is a flowchart illustrating a method of predicting the
number of occupants in each zone.

The energy management system may predict the number
of occupants in each zone before predicting an energy
demand for the zone. The energy management system may
increase user convenience for occupants in each zone and
properly maintain an energy efficiency by first predicting the
number of occupants.

Referring to FIG. 7, the first machine learning model for
predicting the number of occupants may include temperature
data, CO, data, and personal device energy usage data as
input data. The temperature data, the CO, data, and the
personal device energy usage data are all parameters related
to the occupants. For example, when the number of occu-
pants in each zone increases, a CO, concentration also
increases. The first machine learning model may learn a
relationship between the CO, concentration and the number
of occupants and, when the CO, data is input in the predic-
tion step, predict the number of occupants through the input
CO, data. The personal device energy usage data may also
have a close correlation with the number of occupants. For
example, when an energy usage of the PC is high, it may
mean that a person who operates the PC exists in a corre-
sponding zone. The first machine learning model may learn
a relationship between the personal device energy usage data
and the number of occupants and, when the personal device
energy usage data is input in the prediction step, predict the
number of occupants through the input personal device
energy usage data.

The first machine learning model may further use the
illumination data or wireless communication (for example,
Bluetooth, WiFi, etc) data with a user terminal as the input
data. In order to generate the wireless communication data,
a wireless communication device, for example, a Bluetooth
device may be disposed in each zone. The wireless com-
munication device may determine whether the user is
located indoor through wireless communication with the
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user terminal, for example, a mobile phone and generate a
result of the determination as the wireless communication
data.

The first machine learning model may use all the tem-
perature data, the CO, data, and the personal device energy
usage data as the input data or may use only some of the data
as the input data according to some embodiments. For
example, the first machine learning model may calculate the
number of occupants while having the CO, data as the input
data. Further, according to some embodiments, the first
machine learning model may further include the temperature
data and the personal device energy usage data as the input
data.

The first machine learning model may generate error data
by comparing predicted data on the number of occupants
and actually measured data on the number of occupants, and
change parameters and a structure of the first machine
learning model to make an error value of the error data
smaller. At this time, each zone may not include a sensor for
measuring the number of occupants. In such a situation, the
first machine learning model may use other information to
secure actually measured data. For example, the zone agent
(ZEMA) may include a Ul device, and the number of
occupants is occasionally input through the Ul device. Such
user input information may be used as the actually measured
data of the first machine learning model.

The first machine learning model may generate not only
the number of occupants but also an occupant pattern. The
occupant pattern may be a value indicating the existence or
non-existence of occupancy according to a lapse of time, and
the first machine learning model may also generate the
occupant pattern. The machine learning device may generate
occupant estimation information including the number of
occupants and the occupant pattern through the first machine
learning model and generate zone energy demand prediction
data based on the occupant estimation information. Herein-
after, although the number of occupants corresponding to an
example of the occupant estimation information will be
described, the occupant pattern may be used as another
example.

Referring to FIG. 8, the zone agent (ZEMA) transmits
first environment data to the machine learning device 120 in
S802. The first environment data is environment data having
a high correlation with the number of occupants in the
environment data acquired from the sensor network installed
in each zone and may correspond to, for example, tempera-
ture data and CO, data.

The zone agent (ZEMA) transmits personal device energy
usage data to the machine learning device 120 in S804.

The machine learning device 120 calculates the number of
occupants in each zone through the first machine learning
model including the first environment data and the personal
device energy usage data as input data, generates occupant
prediction data, and transmits the generated occupant pre-
diction data to the zone agent (ZEMA) in S806.

When the number of occupants is predicted, zone energy
demand prediction data is then generated.

FIG. 9 is a block diagram illustrating a second machine
learning model for predicting an energy demand for each
zone, and FIG. 10 is a flowchart illustrating a method of
predicting an energy demand for each zone.

Referring to FIG. 9, the second machine learning model
for predicting an energy demand for each zone may include
the number of occupants, environment data, device energy
usage data of an electronic device (energy device and
personal device), and physical information of each zone as
input data. The physical information of each zone may
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include location information of each zone, area information
of each zone, window and door information of each zone,
and outer wall information of each zone. Further, the device
energy usage data may include real time energy usage and
energy usage pattern information. The environment data
may include temperature data, humidity data, illumination
data, CO, data, and the like.

The second machine learning model may learn a relation-
ship between the input data and the zone energy usage and,
when the input data is input in the prediction step, generate
zone energy demand prediction data.

The second machine learning model may generate error
data by comparing the zone energy demand prediction data
and actually measured data, and change parameters and a
structure of the second machine learning model to make an
error value of the error data smaller. At this time, the actually
measured data may be acquired through the device energy
usage data.

Referring to FIG. 10, the machine learning device 120
may predict the number of occupants and generate predicted
data on the number of occupants as described with reference
to FIGS. 7 and 8.

The zone agent (ZEMA) manages physical information of
the zone and aperiodically transmits the physical informa-
tion to the machine learning device 120 in S1004.

The zone agent (ZEMA) transmits the environment data
in 81006 and transmits the device energy usage data of the
electronic device in S1008.

The machine learning device 120 may generate zone
energy demand prediction data of each zone through the
second machine learning model including the number of
occupants, the environment data, the device energy usage
data, and the physical information as input data and transmit
the generated zone energy demand prediction data to the
zone agent (ZEMA) in S1010.

The zone agent (ZEMA) manages energy of each zone
based on the zone energy demand prediction data received
for each zone.

The physical information of each zone may further
include location information of each zone. The machine
learning device may further acquire outdoor air data at a
location of each zone from the zone agent (ZEMA) or
another device, for example, a weather server, and further
insert the outdoor air data into the second machine learning
model as input data to generate zone energy demand pre-
diction data.

The zone agent (ZEMA) may store the environment data,
the device energy usage data, and the physical information
in a local DataBase (DB) and periodically transmit the data
stored in the local DB to a cloud DB associated with the
machine learning device 120. The machine learning device
120 may generate the number of occupants or the zone
energy demand prediction data based on the data stored in
the cloud DB.

When the energy demand prediction for each zone is
completed, the energy management system may collect the
energy demand prediction and perform energy demand
prediction for a building.

FIG. 11 is a block diagram illustrating a third machine
learning model for predicting an energy demand for each
building and FIG. 12 is a flowchart illustrating a method of
predicting an energy demand for each building.

Referring to FIG. 11, the third machine learning model for
predicting an energy demand for each building may include
zone energy demand prediction data, state information of a
building device, and physical information of a building as
input data. The physical information of the building may
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include location information of each building, area infor-
mation of each building, window and door information of
each building, outdoor wall information of each building,
and the like. The state information of the building device
may include, for example, information on an amount of
generation of a building distributed power supply, an amount
of charging of a building ESS, an amount of power supplied
to an electronic car that accesses a building EV charging
station, and the like.

The third machine learning model may learn a relation-
ship between the input data and the building energy usage
and, when the input data is input in the prediction step,
generate building energy demand prediction data.

The third machine learning model may generate error data
by comparing the building energy demand prediction data
and actually measured data, and change parameters and a
structure of the third machine learning model to make an
error value of the error data smaller. At this time, the actually
measured data may be acquired through energy usage data
of each zone, energy usage data of the building device, or
energy supply data.

Referring to FIG. 12, the machine learning device 120
generates energy demand prediction data for each zone in
S1202.

The building agent (BEMA) manages physical informa-
tion of the building and periodically or aperiodically trans-
mits the physical information to the machine learning device
120 in S1204.

The building agent (BEMA) acquires state information of
at least one building device among a building load, a
building distributed power supply, a building ESS, and a
building EV charging station and transmits the acquired state
information to the machine learning device 120 in S1206.

The machine learning device 120 may generate building
energy demand prediction data through the third machine
learning model including the zone energy demand prediction
data of each zone for each building, the state information of
the building device, and the physical information of each
building as input data and transmit the generated building
energy demand prediction data to the building agent
(BEMA) in S1208.

When the energy demand prediction for each building is
completed, the energy management system may collect the
energy demand prediction and perform energy demand
prediction for community.

FIG. 13 is a block diagram illustrating a fourth machine
learning model for predicting a community energy demand
and FIG. 14 is a flowchart illustrating a method of predicting
a community energy demand.

Referring to FIG. 13, the fourth machine learning model
for predicting a community energy demand may include
building energy demand prediction data, state information of
a community device, and physical information of a commu-
nity as input data. The physical information of the commu-
nity may include location information of the community and
the like. The state information of the community device may
include, for example, information on an amount of genera-
tion of a community distributed power supply, an amount of
charging of a community ESS, an amount of power supplied
to an electronic car that accesses a community EV charging
station, and the like.

The fourth machine learning model may learn a relation-
ship between the input data and the community energy usage
and, when the input data is input in the prediction step,
generate community energy demand prediction data.

The fourth machine learning model may generate error
data by comparing the community energy demand predic-
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tion data and actually measured data, and change parameters
and a structure of the fourth machine learning model to make
an error value of the error data smaller. At this time, the
actually measured data may be acquired through energy
usage data of each building, energy usage data of the
community device, or energy supply data.

Referring to FIG. 14, the machine learning device 120
generates energy demand prediction data for each building
in S1402.

The community agent (CEMA) manages physical infor-
mation of the community and periodically or aperiodically
transmits the physical information to the machine learning
device 120 in S1404.

The community agent (CEMA) acquires state information
of at least one community device among a community load,
a community distributed power supply, a community ESS,
and a community EV charging station and transmits the
acquired state information to the machine learning device
120 in S1406.

The machine learning device 120 may generate commu-
nity energy demand prediction data through the fourth
machine learning model including the building energy
demand prediction data for each building, state information
of the community device, and the physical information of
the community as input data and transmit the generated
community energy demand prediction data to the commu-
nity agent (CEMA) in S1408.

The energy management system may generate an optimal
control scenario and an energy management policy for each
level based on the energy demand prediction data.

FIG. 15 is a flowchart illustrating a method of optimizing
energy according to an embodiment.

Referring to FIG. 15, the energy management system
optimizes energy at a community level in S1502.

The community level may include a community device,
which does not belong to each building, and an optimal
control scenario for the community device may be generated
in a community level optimization step. When the optimal
control scenario for the community device is generated, the
energy management system may generate the optimal con-
trol scenario to minimize energy costs. For example, the
energy management system may control the energy usage of
the community device every hour or totally based on
demand reaction incentive and real time energy cost infor-
mation and minimize the energy costs through the control.
More specifically, the energy management system may
schedule the use of the community device in a time zone in
which the energy cost is low through the real time energy
cost information and also schedule the use of the community
device to reduce the use of energy in a time zone in which
the demand reaction incentive is provided.

The energy management system may generate an optimal
control scenario for directly controlling the community
device, generate an energy management policy for inducing
a particular objective function for buildings belonging to the
community to be maximal, and transmit the generated
optimal control scenario and energy management policy to
the building agent of each building. The energy management
policy is related to a policy for inducing a particular objec-
tive function value rather than a compulsory control signal
to be maximal. For example, the energy management policy
may include a policy for inducing a particular objective
function such as a demand reaction incentive policy rather
than a compulsory control signal such as load blocking or
load scheduling to be maximal.

The community agent may generate the energy manage-
ment policy to make the objective function maximal while
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using the objective function for making a total amount of the
demand reaction incentive of the community maximal. For
example, a subject that manages the community agent may
be an energy demand management company that collects
and operates buildings to participate in the demand reaction
in the unit of communities. The energy demand management
company may be a company that is established for the
purpose of maximizing the total amount of the demand
reaction incentive of the community.

Alternatively, the energy demand management company
may be a company that is established for the purpose of
maximizing a profit through participation in the demand
reaction. In this case, the objective function used by the
community agent may make a total amount of a demand
management profit of the community maximal. The demand
management profit may be an amount of money except for
a building demand reaction incentive re-distributed to each
building from a community demand reaction incentive
received from the power trade market. When the building
demand reaction incentive is excessively high, the commu-
nity demand reaction incentive profit may be reduced. When
the building demand reaction incentive is excessively low, a
demand reaction adaptation index of each building becomes
low and the community demand reaction incentive profit
may be also reduced. The energy management system may
generate an energy management policy in consideration of
such things.

When the energy management policy is transmitted to the
building agent, the energy management system optimizes
energy at a building level in S1504.

A building device, which does not belong to each zone,
may be included in the building level, and an optimal control
scenario for the building device may be generated in a
building level optimization step. When generating the opti-
mal control scenario for the building device, the energy
management system may generate the optimal control sce-
nario to minimize energy costs. For example, the energy
management system may control the energy usage of the
building device every hour or totally based on demand
reaction incentive and real time energy price information
and minimize the energy costs through the control. More
specifically, the energy management system may schedule
the use of the building device in a time zone in which the
energy cost is low through the real time energy price
information and also schedule the use of the building device
to reduce the use of energy in a time zone in which the
demand reaction incentive is provided.

The demand reaction incentive may be included in the
energy management policy received from the community
agent. Since the building agent generates the optimal control
scenario in consideration of the energy management policy
received from the community agent, the building agent is not
directly controlled by the community agent but may main-
tain an indirect control relationship with the community
agent.

The energy management system may generate an optimal
control scenario for directly controlling the building device,
generate an energy management policy for inducing a par-
ticular objective function value for zones belonging to the
building to be maximal, and transmit the generated optimal
control scenario and energy management policy to the zone
agent of each zone. The energy management policy is related
to a policy for inducing a particular objective function value
rather than a compulsory control signal to be maximal. For
example, the energy management policy may include a
policy for inducing a particular objective function such as a
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demand reaction incentive policy rather than a compulsory
control signal such as load blocking or load scheduling to be
maximal.

The building agent may generate the energy management
policy to make the objective function minimum while using
the objective function to make the energy cost of the
building minimum.

The energy management policy which the community
agent transmits to each building agent or the energy man-
agement policy which the building agent transmits to each
zone agent may be differently determined according to each
building agent or each zone agent. For example, the building
agent may differently determine a first energy management
policy for a first zone agent and a second energy manage-
ment policy for a second zone agent. When the demand
reaction incentive policy is used as the energy management
policy, a demand reaction load capacity for receiving the
demand reaction incentive is predetermined, so that it is
required to properly distribute the demand reaction load
capacity for each building or each zone and provide an
incentive suitable for load participating in the demand
reaction. To this end, the community agent may generate
different energy management policies according to the
building agent, so as to create a maximum demand man-
agement profit through each building agent. Further, the
building agent may generate different energy management
policies according to the zone agent, so as to minimize the
energy cost of the entire building.

When the energy management policy is transmitted to the
zone agent, the energy management system optimizes
energy at a zone level in S1506.

Since the zone level does not have a lower level, gener-
ating an optimal control scenario for all devices (loads)
which can be controlled may be important. Meanwhile, the
energy management system generates the control scenario in
consideration of convenience of users who live in each zone
as well as the energy cost, so that the objective function may
be different from objective functions at other levels.

When generating the optimal control scenario of the zone,
the energy management system may generate the optimal
control scenario in further consideration of user setting
information, indoor/outdoor environment information,
energy use pattern information of each device, occupant
information, and the like as well as the energy management
policy. Such information may be used for considering user
convenience.

Hereinafter, a case where the demand reaction incentive
policy is used as the energy management policy will be
described as an example for the convenience of understand-
ing.

FIG. 16 illustrates a process of determining a community
demand reaction incentive policy in an energy management
system according to an embodiment.

Referring to FIG. 16, each zone agent (ZEMA) calculates
zone energy demand prediction data and a zone demand
reaction load capacity and transmits the calculated zone
energy demand prediction data and zone demand reaction
load capacity to the building agent (BEMA). Each zone
agent (ZEMA) may not transmit the zone demand reaction
load capacity to the building agent (BEMA). The building
agent (BEMA) may calculate and manage a load capacity
predicted to participate in a demand reaction in each zone.

The building agent (BEMA) collects zone energy demand
prediction data and adds energy demand prediction data of
a building device, which does not belong to each zone, to
generate building energy demand prediction data. The build-
ing agent (BEMA) collects zone demand reaction load
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capacities and calculates a demand reaction load capacity of
a building device, which does not belong to each zone, to
generate a building demand reaction load capacity. The
building agent (BEMA) transmits the building energy
demand prediction data and the building demand reaction
load capacity to the community agent (CEMA). The build-
ing agent (BEMA) may not transmit the building demand
reaction load capacity to the community agent (CEMA). The
community agent (CEMA) may calculate and manage a load
capacity predicted to participate in a demand reaction in
each building.

The community agent (CEMA) collects building energy
demand prediction data and adds energy demand prediction
data of the community device, which does not belong to
each building, to generate community energy demand pre-
diction data. The community agent (CEMA) collects build-
ing demand reaction load capacities and calculates a demand
reaction load capacity of a community device, which does
not belong to each building, to generate a community
demand reaction load capacity. The community demand
reaction load capacity may be a value estimated through the
machine learning model. In an embodiment in which the
community agent (CEMA) does not receive the load capac-
ity to participate in the demand reaction from each building
agent (BEMA), the community agent (CEMA) may estimate
and manage the community demand reaction load capacity.

The community agent (CEMA) may bid for the demand
reaction system based on the community energy demand
prediction data and the community demand reaction load
capacity and receive a community demand reaction incen-
tive policy as a result of the bid.

The community demand reaction incentive policy may be
a demand reaction load capacity and a price policy. For
example, the community demand reaction incentive policy
may be a load capacity that participates in the demand
reaction and a price policy of the load capacity. In a more
detailed example, the community demand reaction incentive
policy may be a size of the load capacity and a price of the
load capacity per KW. At this time, the price may be
differently determined in the unit of time. The building
demand reaction incentive policy or the zone demand reac-
tion incentive policy may also be the demand reaction load
capacity and the price policy for the demand reaction load
capacity.

FIG. 17 illustrates a process for optimization at a com-
munity level according to an embodiment.

Referring to FIG. 17, the machine learning device may
generate an optimal control scenario for the community
device through the community-optimized machine learning
model.

The community agent may acquire state information of at
least one community device among a community load, a
community distributed power supply, a community Energy
Storage System (ESS), and a community Electric Vehicle
(EV) charging station, which do not belong to the building,
and transmits the acquired state information to the machine
learning device.

The machine learning device may generate an optimal
control scenario for the community device based on the state
information of the community device and a community
demand reaction incentive policy. At this time, the machine
learning device may generate the optimal control scenario to
minimize an energy cost of the community device.

When the optimal control scenario generated by the
machine learning device is transmitted to the community
agent, the community agent may control community devices
according to the optimal control scenario.
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Meanwhile, the machine learning device may generate a
building demand reaction incentive policy to be applied to
each building through a community-optimized machine
learning model including building energy demand predic-
tion data of each building, building energy usage data, and
the community demand reaction incentive policy as input
data. At this time, the generated building demand reaction
incentive policy may vary depending on the building.

The community-optimized machine learning model may
generate the building demand reaction incentive policy to
make a particular optimization function maximum or mini-
mum. Further, the community-optimized machine learning
model may perform machine learning according to error
data by a difference between a predicted value and an
actually measured value for the optimization function.

For example, the optimization function may be a function
for a community demand management profit. At this time,
the community-optimized machine learning model may gen-
erate the building demand reaction incentive policy for each
building to make the community demand management profit
maximum. However, the demand reaction may not be con-
ducted in a direction in which each building expects. In this
case, the community-optimized machine learning model
may determine that an internal parameter is not optimized
and perform machine learning according to error data by the
difference between the predicted value and the actually
measured value.

For example, the machine learning device may generate
the predicted value for the community demand management
profit through the community-optimized machine learning
model and receive the actually measured value for the
community demand management profit from the community
agent. Further, the machine learning device may learn the
community-optimized machine learning model based on the
error data according to the difference between the predicted
value and the actually measured value.

In another example, the machine learning device may
generate the predicted value for the demand management
profit in a viewpoint of the community for each building
through the community-optimized machine learning model
and receive the actually measured value for the demand
reaction incentive profile for each building from the com-
munity agent. Further, the machine learning device may
learn the community-optimized machine learning model
based on the error data according to the difference between
the predicted value and the actually measured value.

The community-optimized machine learning model may
calculate a demand reaction load capacity of each building
as the building demand reaction incentive policy. In such an
embodiment, the machine learning device may learn the
community-optimized machine learning model based on
error data according to a difference between the demand
reaction load capacity calculated for each building through
the community-optimized machine learning model and a
load capacity of each building that actually participates in
the demand reaction.

The community-optimized machine learning model may
also generate a demand reaction adaptation index for each
building. The demand reaction adaptation index may be used
for calculating a demand reaction load capacity and an
energy price for each building while being used as an
internal parameter of the community-optimized machine
learning model.

Meanwhile, the demand reaction adaptation index may be
used for machine learning. The community-optimized
machine learning model may further generate a demand
reaction adaptation index prediction value for each building,
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and the machine learning device may learn the community-
optimized machine learning model based on error data
according to a difference between the demand reaction
adaptation prediction value and an actually measured value.

FIG. 18 is a block diagram illustrating a community-
optimized machine learning model according to an embodi-
ment.

Referring to FIG. 18, the community-optimized machine
learning model may include real time energy price informa-
tion, a demand reaction incentive policy, a CO, reduction
incentive policy, state information of the community device,
energy usage data of each building, and community energy
demand prediction data as input data.

The machine learning device may generate a community
device optimal control scenario through the community-
optimized machine learning model. The machine learning
device may generate a building demand reaction incentive
policy of each building through the community-optimized
machine learning model. According to some embodiments,
the machine learning device may further generate a CO,
reduction incentive policy of each building.

The community-optimized machine learning model may
generate output values to make an optimization function
maximal or minimal.

First optimization function=ixenergy cost—kxdemand
reaction incentive profit-jxCO, reduction incen-

tive profit Equation (1)

The CO, reduction incentive may be calculated by a
function of new renewable energy usage or an electronic car
charging amount, and i, k, and j may be determined accord-
ing to selection of a demand management business operator
or selection of an energy management system.

The community-optimized machine learning model may
generate an optimization function value as an output, com-
pare the generated optimization function value with actually
measured data, and use the value for machine learning.
Further, the community-optimized machine learning model
may further include a demand reaction adaptation index of
each building as input data. The demand reaction adaptation
index may be generated by the community agent and trans-
mitted to the machine learning device.

FIG. 19 is a flowchart illustrating a method of generating
a community optimal control scenario according to an
embodiment.

The community agent (CEMA) may manage a demand
reaction load capacity for the community and receive real
time energy price information, a demand reaction incentive
policy, and a CO, reduction incentive policy from a power
trade market. The community agent (CEMA) bids for the
demand reaction system based on the community energy
demand prediction data and the community demand reaction
load capacity, and the demand reaction incentive policy and
the CO, reduction incentive policy may be values received
as a result of the bid. The community agent (CEMA) may
periodically or aperiodically update the demand reaction
incentive policy and the CO, reduction incentive policy
through the bid.

Referring to FIG. 19, the machine learning device 120
generates community energy demand prediction data and
transmits the generated community energy demand predic-
tion data to the community agent (CEMA) in S1902.

The community agent (CEMA) transmits the community
energy demand prediction data to the power trade market in
S1904, and transmits the demand reaction load capacity
which may participate in the demand reaction in the com-
munity, to the power trade market in S1906.
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The power trade market such as a server for managing the
power trade market in hardware may transmit the demand
reaction incentive policy and the CO, reduction incentive
policy to the community agent (CEMA) in accordance with
the information in S1908.

The demand reaction incentive policy may include the
load capacity which should participate in the demand reac-
tion, information on time, and information on an incentive in
the participation in the demand reaction. Further, the CO,
reduction incentive policy may include incentive informa-
tion according to the usage of each new renewable energy.

The power trade market may transmit real time energy
price information to the community agent (CEMA) in
S1910.

The community agent (CEMA) may transmit real time
energy price information to the machine learning device 120
in S1912, and transmit the demand reaction incentive policy
and the CO, reduction incentive policy in S1914.

The community agent (CEMA) may transmit state infor-
mation of the community device to the machine learning
device 120 in S1916, and transmit energy usage data of each
building to the machine learning device 120 in S1920.

The machine learning device 120 may generate a demand
reaction incentive policy of each building, a CO, reduction
incentive policy of each building, and a control scenario for
the community device through the community-optimized
machine learning model including the real time energy price
information, the demand reaction incentive policy, the CO,
reduction incentive policy, the state information of the
community device, the energy usage data of each building,
and the community energy demand prediction data as input
data, and transmit the generated demand reaction incentive
policy of each building, a CO, reduction incentive policy of
each building, and a control scenario for the community
device to the community agent (CEMA) in S1922 and 1924.

The community agent (CEMA) may control the commu-
nity device according to the control scenario for the com-
munity device and transmit the demand reaction incentive
policy of each building and the CO, reduction incentive
policy to each building agent (BEMA).

Meanwhile, the building agent may manage building
energy demand prediction data including zone energy
demand prediction data of each zone and a building demand
reaction load capacity including a zone demand reaction
load capacity, and manage a building demand reaction
incentive policy applied to the building.

The machine learning device may generate a zone
demand reaction incentive policy to be applied to each zone
through a building-optimized machine learning model that
includes the zone energy demand prediction data of each
zone and the building demand reaction incentive policy as
input data and calculates an energy cost of the building to be
minimized and transmit the generated zone demand reaction
incentive policy to the building agent.

The building agent may transmit the zone demand reac-
tion incentive policy to the zone agent corresponding to each
zone.

FIG. 20 illustrates a process for optimization at a building
level according to an embodiment.

Referring to FIG. 20, the machine learning device may
generate an optimal control scenario for the building device
through the building-optimized machine learning model.

The building agent may acquire state information of at
least one building device among a building load, a building
distributed power supply, a building ESS, and a building EV
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charging station, which do not belong to the zone, and
transmit the acquired state information to the machine
learning device.

The machine learning device may generate an optimal
control scenario for the building device based on the state
information of the building device and a building demand
reaction incentive policy. At this time, the machine learning
device may generate the optimal control scenario to mini-
mize an energy cost of the building device.

When the optimal control scenario generated by the
machine learning device is transmitted to the building agent,
the building agent may control building devices according to
the optimal control scenario.

Meanwhile, the machine learning device may generate a
zone demand reaction incentive policy to be applied to each
zone through a building-optimized machine learning model
including zone energy demand prediction data of each zone,
zone energy usage data, and the zone demand reaction
incentive policy as input data. At this time, the generated
zone demand reaction incentive policy may vary depending
on the zone.

The building-optimized machine learning model may
generate the zone demand reaction incentive policy to make
a particular optimization function maximal or minimal.
Further, the building-optimized machine learning model
may perform machine learning according to error data by a
difference between a predicted value and an actually mea-
sured value for the optimization function.

For example, the optimization function may be a function
for a building energy cost. At this time, the building-
optimized machine learning model may generate the zone
demand reaction incentive policy for each zone to make the
building energy cost minimum. However, the demand reac-
tion may not be performed in a direction in which each zone
expects. In this case, the building-optimized machine learn-
ing model may determine that an internal parameter is not
optimized and perform machine learning according to error
data by the difference between the predicted value and the
actually measured value.

FIG. 21 is a block diagram illustrating a building-opti-
mized machine learning model according to an embodiment.

Referring to FIG. 21, the building-optimized machine
learning model may include real time energy price informa-
tion, a demand reaction incentive policy of each building, a
CO, reduction incentive policy, state information of each
building device, energy usage data of each zone, and build-
ing energy demand prediction data of each building as input
data.

The machine learning device may generate a demand
reaction incentive policy of each zone, a CO, reduction
incentive policy of each zone, and a control scenario for the
building device.

The building-optimized machine learning model may
generate output values to minimize a second optimization
function.

The second optimization function is a function that mini-
mizes a total building energy usage, maximizes an incentive
according to a demand reaction, and maximizes an incentive
according to CO, reduction.

FIG. 22 is a flowchart illustrating a method of generating
an optimal control scenario for a building according to an
embodiment.

Referring to FIG. 22, the machine learning device 120
may transmit a demand reaction incentive policy of each
building and a CO, reduction incentive policy to the com-
munity agent (CEMA) in S2202, and the community agent
(CEMA) may transmit the demand reaction incentive policy
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of each building and the CO, reduction incentive policy to
the building agent (BEMA) in S2204.

The building agent (BEMA) may transmit real time
energy price information, the demand reaction incentive
policy of each building, the CO, reduction incentive policy,
state information of the building device, demand reaction
load information of the building, energy usage data of each
zone, and the like to the machine learning device 120 in
S2206, S2208, S2210, S2212, and S2214.

The machine learning device 120 may generate a demand
reaction incentive policy of each zone, a CO, reduction
incentive policy of each zone, and a control scenario for
each building device through a building-optimized machine
learning model including the real time energy price infor-
mation, the demand reaction incentive policy of each build-
ing, the CO, reduction incentive policy, the state information
of each building device, the energy usage data of each zone,
and the building energy demand prediction data of each
building as input data, and transmit the generated demand
reaction incentive policy of each zone, CO, reduction incen-
tive policy of each zone, and control scenario for each
building device to the building agent (BEMA) in S2216 and
S2218.

The machine learning device 120 may calculate a demand
reaction load capacity of each zone and a demand reaction
adaptation index, and generate a demand reaction incentive
policy of each zone and a CO, reduction incentive policy
based on the demand reaction load capacity of each zone and
the demand reaction adaptation index.

FIG. 23 is a block diagram illustrating a zone-optimized
program for generating an optimal control scenario for each
zone according to an embodiment, and FIG. 24 is a flowchart
illustrating a method of generating an optimal control sce-
nario for each zone according to an embodiment.

The zone agent (ZEMA) may mange demand reaction
load information of each zone and receive a demand reaction
incentive policy of each zone and a CO, reduction incentive
policy from the building agent (BEMA).

Referring to FIG. 23, the zone-optimized program for
generating an optimal control scenario for each zone may
include real time energy price information, a demand reac-
tion incentive policy and a CO, reduction incentive policy of
each zone, occupant information in each zone, device energy
usage data (or energy use pattern information of each
device) of an energy device and a personal device operating
in each zone, and zone energy demand prediction data of
each zone as input data.

In another example, the zone-optimized program may
include user setting information, indoor/outdoor environ-
ment information, energy use pattern information of each
device, occupant information, zone demand reaction load
information, and zone energy demand prediction data as
input data. The user setting information may be, for
example, demand reaction priority setting information,
meeting schedule setting information, indoor environment
setting information.

The machine learning device may generate an optimal
control scenario for the energy device and the personal
device operating in each zone through the zone-optimized
program.

The zone agent may further manage meeting schedule
setting information and information on the number of daily
settings for temperature or illumination of the energy device,
and the zone-optimized program may further include the
meeting schedule setting information and the information on
the number of settings as input data and generate an optimal

10

20

25

30

35

40

45

20

control scenario for a meeting schedule, indoor temperature,
indoor illumination, and the like.

The zone-optimized program may further include user
setting information as input data. For example, the zone
agent (ZEMA) may include a Ul device, generate priority
information of a load device to participate in the demand
reaction, changeable meeting schedule information, desired
indoor environment information (for example, temperature,
humidity, illumination, fine dust, and the like), and input the
generated information into the zone-optimized program as
the user setting information. The zone agent (ZEMA) having
no input of occupants may generate the user setting infor-
mation as a default value or a previously set value.

The zone-optimized program may generate a control
scenario to make a third optimization function minimum (or
maximum).

Third optimization function=ixenergy cost-%xuser
convenience

User convenience=axcomfort index—bxnumber of
settings for energy device+cxproximity of user

setting value Equation (2)

In equation (2), i, h, a, b, and ¢ may be controlled by the
user, the comfort index may be a function of temperature,
humidity, CO, concentration, and fine dust concentration,
and the number of settings for the energy device may be, for
example, the number of changes in the setting for the HVAC
or the number of changes in illumination of the lighting
device. The proximity of the user setting value may be, for
example, a proximity between indoor temperature set by the
user and actually measured indoor temperature. Alterna-
tively, the proximity of the user setting value may be, for
example, a proximity between the indoor temperature set by
the user and indoor temperature to be controlled by the zone
agent (ZEMA).

The optimal control scenario may include an operation
command value of each device and thus the zone agent
(ZEMA) may control each device according to the operation
command value. The control scenario for the building device
and the control scenario for the community device may also
include the operation command value, and each of the agents
(BEMA and CEMA) may control corresponding devices
according to the operation command value.

Referring to FIG. 24, the machine learning device 120
may transmit a demand reaction incentive policy and a CO,
reduction incentive policy of each zone to the building agent
(BEMA) in S2402, and the building agent (BEMA) may
transmit the demand reaction incentive policy and the CO,
reduction incentive policy of each zone to the zone agent
(ZEMA) in S2404.

The zone agent (ZEMA) may transmit real time price
information, the demand reaction incentive policy and the
CO, reduction incentive policy of each zone, the number of
occupants in each zone, device energy usage data of an
energy device and a personal device operating in each zone,
and zone energy demand prediction data of each zone to the
machine learning device 120 in S2406, S2408, and S2410.

The machine learning device may generate a control
scenario for the energy device and the personal device
operating in each zone through the zone-optimized program
and transmit the generated control scenario to the zone agent
(ZEMA) in S2414.

FIG. 25 is a flowchart illustrating a method of managing
energy according to another embodiment.

Referring to FIG. 25, an energy management system for
managing energy of at least one community in which at least
one building divided into at least one zone exists may



US 10,361,584 B2

21

acquire environment data of each zone from a sensor net-
work installed in each zone, acquire device energy usage
data of an energy device and a personal device operating in
each zone, and acquire physical information of each zone in
S2502.

The energy management system may generate occupant
information in each zone through a first machine learning
model including temperature data and CO, data of the
environment data and the device energy usage data of the
personal device as input data, and generate zone energy
demand prediction data of each zone through a second
machine learning model including the occupant information,
the environment data, the device energy usage data of the
energy device and the personal device, and the physical
information of each zone as input data in S2504. The energy
management system may manage energy of each zone based
on the zone energy demand prediction data.

The energy management system may acquire state infor-
mation of at least one building device among a building
load, a building distributed power supply, a building Energy
Storage System (ESS), and a building Electric Vehicle (EV)
charging station, which do not belong to the zone in each
building, and acquire physical information of each building
in S2506.

With respect to each building, the energy management
system may generate building energy demand prediction
data through a third machine learning model including zone
energy demand prediction data of each zone, state informa-
tion of a building device, and physical information of each
building as input data in S2508.

The energy management system may acquire state infor-
mation of at least one community device among a commu-
nity load, a community distributed power supply, a commu-
nity Energy Storage System (ESS), and a community
Electric Vehicle (EV) charging station, which do not belong
to the building in the community, and acquire physical
information of the community in S2510.

The energy management system may generate commu-
nity energy demand prediction data through a fourth
machine learning model including building energy demand
prediction data of each building, state information of a
community device, and physical information of the commu-
nity as input data in S2512.

The energy management system may acquire demand
reaction load information of the community and receive real
time energy price information, a demand reaction incentive
policy, and a CO, reduction incentive policy from a power
management server (a server for managing a power trade
market) in S2514.

The energy management system may generate a demand
reaction incentive policy of each building, a CO, reduction
incentive policy of each building, and a control scenario for
the community device through the community-optimized
machine learning model including the real time energy price
information, the demand reaction incentive policy, the CO,
reduction incentive policy, the state information of the
community device, the energy usage data of each building,
and the community energy demand prediction data as input
data in S2516.

Further, the energy management system may acquire the
demand reaction incentive policy and the CO, reduction
incentive policy in S2518.

The energy management system may generate a demand
reaction incentive policy of each zone, a CO, reduction
incentive policy of each zone, and a control scenario for
each building device through the building-optimized
machine learning model including the real time energy price
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information, the demand reaction incentive policy of each
building, the CO, reduction incentive policy, the state infor-
mation of each building device, the energy usage data of
each zone, and the building energy demand prediction data
of each building as input data in S2520.

Further, the energy management system may acquire the
demand reaction incentive policy and the CO, reduction
incentive policy in S2522.

The energy management system may generate a control
scenario for an energy device and a personal device oper-
ating in each zone through the zone-optimized program
including the real time energy price information, the demand
incentive policy and a CO, reduction incentive policy of
each zone, occupant information of each zone, device
energy usage data of an energy device and a personal device
operating in each zone, and zone energy demand prediction
data of each zone as input data in S2524.

FIG. 26 is a flowchart illustrating a method of predicting
an energy demand according to another embodiment.

Referring to FIG. 26, with respect to at least one com-
munity in which at least one building divided into at least
one zone exists, an energy management system may calcu-
late the number of occupants in each zone through a first
machine learning model including CO, data of each zone as
input data in S2604.

The energy management system may generate zone
energy demand prediction data of each zone through a
second machine learning model including the number of
occupants, environment data of each zone, and device
energy usage data as input data in S2604.

The energy management system may generate building
energy demand prediction data of each building through a
third machine learning model including zone energy demand
prediction data of each zone and state information of a
building device which does not belong to each zone in
S2606.

The energy management system may generate commu-
nity energy demand prediction data of the community
through a fourth machine learning model including building
energy demand prediction data of each building and state
information of a community device which does not belong
to each building in S2608.

The first machine learning model may further include
temperature data of each zone and device energy usage data
of a personal device located in each zone as input data, the
second machine learning model may further include physi-
cal information of each zone as input data, the third learning
model may further include physical information of each
building as input data, and the fourth machine learning
model may further include physical information of the
community as input data.

FIG. 27 is a block diagram illustrating the inside of an
xEMA.

All of the zone agent (ZEMA), the building agent
(BEMA), and the community agent (CEMA) may have the
same structure of the xEMA. Each of the agents (ZEMA,
BEMA, and CEMA) may set some elements to be active or
non-active as necessary.

The xEMA may include a local DB 2402 for locally
storing data, a weather device 2404 for acquiring weather
information or outdoor air data, a demand reaction device
2406 for managing demand reaction information and pro-
cessing a demand reaction command value, a real time price
device 2408 for managing a real time energy price of power,
a layer management device 2410 for managing a hierarchi-
cal structure of the agents, a configuration management
device 2412 for diagnosing a trouble of the agent, a Machine
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Learning (ML) device 2414 for managing machine learning
and other controls, a sensor measurement device 2416 for
acquiring environment data from a sensor, an electronic
device measurement device 2418 for acquiring energy usage
data from an electronic device, a distributed power supply
control device 2420 for acquiring state information of a
distributed power supply and controlling the distributed
power supply, an ESS control device 2422 for acquiring
state information of an ESS and controlling the ESS, an EV
charging station control device 2424 for acquiring state
information of an EV charging station and controlling the
EV charging station, a load management device 2426 for
controlling and managing load, a UI device 2428 for pro-
viding a Ul, and the like.

FIG. 28 is a block diagram illustrating in detail the layer
management device of FIG. 27.

The layer management device 2410 may include a PEA
module for managing node information of a parent EMS
agent corresponding to a high layer level, a CEA module for
managing node information of a child EMS agent corre-
sponding to a low layer level, and an NEA module for
managing node information of a neighbor EMS agent and an
AR module for managing agent registration information
which correspond to the same level.

Referring back to FIG. 2, the community agent (CEMA)
may manage node information of the building agent
(BEMA) corresponding to the low layer level through the
CEA module and, when the building agent (BEMA) of a
particular node breaks down, control the building agent
(BEMA) of another node to perform instead a function of the
broken building agent (BEMA).

When the community agent (CEMA) corresponding to the
highest layer breaks down, one of the building agents
(BEMA) corresponding to the low layer level may perform
instead a function of the community agent (CEMA).

At this time, the other agent that replaces the broken agent
may have a preset priority and perform the function instead
according to the priority. Such an automatic trouble recovery
function can be performed because respective agents have
the same structure and the agents operate in parallel rather
than sequentially.

The embodiments of the present invention have been
described until now. According to the embodiments, the
EMS can reflect various (energy) environments for each
zone of a building, a reliability of a total system does not
deteriorate even though a partial failure is generated, plug &
play of the device is possible, and a present condition of
occupancy of an occupant, an energy use pattern, and
convenience can be reflected.

Further, according to the embodiments, it is possible to
provide an energy management system technology for opti-
mally determining user convenience and energy costs for
each zone of the building. In addition, according to the
embodiments, it is possible to solve the problem of the
conventional top-down type (a centralized integrated control
type) and reflect an independent energy management policy
of each zone to determine an energy management policy of
the entire area.

In addition, since terms, such as “including,” “compris-
ing,” and “having” mean that one or more corresponding
components may exist unless they are specifically described
to the contrary, it shall be construed that one or more other
components can be included. All the terms that are technical,
scientific or otherwise agree with the meanings as under-
stood by a person skilled in the art unless defined to the
contrary. Common terms as found in dictionaries should be
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interpreted in the context of the related technical writings
not too ideally or impractically unless the present invention
expressly defines them so.

Although a preferred embodiment of the present invention
has been described for illustrative purposes, those skilled in
the art will appreciate that various modifications, additions
and substitutions are possible, without departing from the
scope and spirit of the invention as disclosed in the accom-
panying claims. Therefore, the embodiments disclosed in the
present invention are intended to illustrate the scope of the
technical idea of the present invention, and the scope of the
present invention is not limited by the embodiment. The
scope of the present invention shall be construed on the basis
of the accompanying claims in such a manner that all of the
technical ideas included within the scope equivalent to the
claims belong to the present invention.

What is claimed is:

1. A system for managing energy of a community in which
at least one building having at least one divided zone is
located, the system comprising:

at least one zone agent for acquiring environment data of
each zone from a sensor network installed in each zone,
acquiring device energy usage data of an energy device
and a personal device operating in each zone, and
managing physical information of each zone;

a machine learning device for generating occupant esti-
mation information of each zone through a first
machine learning model including temperature data
and CO, data of the environment data and the device
energy usage data of the personal device as input data,
generating zone energy demand prediction data of each
zone through a second machine learning model includ-
ing the occupant estimation information, the environ-
ment data, the device energy usage data of the energy
device and the personal device, and the physical infor-
mation of each zone as input data, and transmitting the
generated occupant estimation information and zone
energy demand prediction data to the zone agent,

wherein the zone agent manages and controls energy
distribution to each individual zone based on the zone
energy demand prediction data received for each zone,
and

a building agent for acquiring state information of at least
one building device among a building load, a building
distributed power supply a building Energy Storage
System (ESS), and a building Electric Vehicle (EV)
charging station, which do not belong to the zone in
each building, and managing physical information of
each building, wherein the machine device generates
building energy demand prediction data through a third
machine learning model including the zone energy
demand prediction data of each zone in each building,
the state information of the building device, and the
physical information of each building as input data and
transmits the generated building energy demand pre-
diction data to the building agent.

2. The system of claim 1, wherein the first machine
learning model further includes illumination data or wireless
communication data with a user terminal as the input data.

3. The system of claim 1, wherein the physical informa-
tion of each zone further includes location information of
each zone, the machine learning device further acquires
outdoor air data at a location of each zone from the zone
agent or another device, and the second machine learning
model generates the zone energy demand prediction data
with the outdoor air data as additional input data.
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4. The system of claim 1, further comprising a community
agent for acquiring state information of at least one com-
munity device among a community load, a community
distributed power supply, a community ESS, and a commu-
nity EV charging station, which do not belong to the
building in the community, wherein the machine device
generates community energy demand prediction data
through a fourth machine learning model including the
building energy demand prediction data of each building, the
state information of the community device, and the physical
information of the community as input data and transmits
the generated building energy demand prediction data to the
community agent.

5. The system of claim 4, wherein the community agent
manages the building energy demand prediction data of each
building and building energy usage data and manages a
community demand reaction incentive policy applied to the
community, the machine learning device includes the build-
ing energy demand prediction data of each building, the
building energy usage data, and the community demand
reaction incentive policy as input data, generates a building
demand reaction incentive policy to be applied to each
building through a community-optimized machine learning
model for calculating a best community demand manage-
ment profit of the community, and transmits the generated
building demand reaction incentive policy to the community
agent, and the community agent transmits the building
demand reaction incentive policy to a building agent corre-
sponding to each building.

6. The system of claim 5, wherein the machine learning
device generates a predicted value of the community
demand management profit through the community-opti-
mized machine learning model, receives an actually mea-
sured value of the community demand management profit
from the community agent, and learns the community-
optimized machine learning model based on error data
according to a difference between the predicted value and
the actually measured value.

7. The system of claim 5, wherein the community agent
bids for a demand reaction system based on the community
energy demand prediction data and a community demand
reaction load capacity and receives the community demand
reaction incentive policy as a result of the bid.

8. The system of claim 5, wherein the machine learning
device learns the community-optimized machine learning
model based on error data according to a difference between
a load capacity of each building which actually participates
in a demand reaction and a demand reaction load capacity
calculated for each building as one element of the commu-
nity demand reaction incentive policy.

9. The system of claim 5, wherein the community-opti-
mized machine learning model further generates a predicted
value of a demand reaction adaptation index of each build-
ing, and the machine learning device learns the community-
optimized machine learning model based on error data
according to a difference between the predicated value and
an actually measured value of the demand reaction adapta-
tion index.

10. The system of claim 5, wherein the building agent
manages the zone energy demand prediction data and the
zone energy usage data of each zone and manages the
building demand reaction incentive policy applied to the
building, the machine learning device generates a zone
demand reaction incentive policy to be applied to each zone
through a building-optimized machine learning model,
which includes the zone energy demand prediction data and
the zone energy usage data of each zone and the building
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demand reaction incentive policy as input data and calcu-
lates minimum energy costs for the building, and transmits
the generated zone demand reaction incentive policy to the
building agent, and the building agent transmits the zone
demand reaction incentive policy to the zone agent corre-
sponding to each zone.
11. The system of claim 10, wherein the zone agent
manages user setting information, indoor/outdoor environ-
ment information, energy use pattern information of each
device, and occupant information, and manages the zone
demand reaction incentive policy, and the machine learning
device generates an optimal control scenario for a device
within the zone through a zone-optimized program that
includes the user setting information, the indoor/outdoor
environment information, the energy use pattern information
of each device, and the occupant information as input data
and calculates an optimal value of an objective function
including user convenience and energy cost reduction as
parameters, and transmits the optimal control scenario to the
zone agent.
12. The system of claim 11, wherein the user convenience
is measured with a factor corresponding to proximity
between the number of settings of an energy device or an
energy device setting value and an energy device measure-
ment value.
13. A method of managing energy of a community in
which at least one building having at least one divided zone
is located, the method comprising:
acquiring environment data of each zone from a sensor
network installed in each zone, acquiring device energy
usage data of an energy device and a personal device
operating in each zone, and acquiring physical infor-
mation of each zone;
calculating a number of occupants in each zone through a
first machine learning model including temperature
data and CO, data of the environment data and the
device energy usage data of the personal device as input
data, and generating zone energy demand prediction
data of each zone through a second machine learning
model including the occupant estimation information,
the environment data, the device energy usage data of
the energy device and the personal device, and the
physical information of each zone as input data;

managing and controlling with a zone agent energy dis-
tribution to each individual zone based on the zone
energy demand prediction data of each zone;

acquiring state information of at least one building device
among a building load, a building distributed power
supply, a building Energy Storage System (ESS), and a
building Electric Vehicle (EV) charging station, which
do not belong to the zone in each building, and acquir-
ing physical information of each building; and

generating building energy demand prediction data
through a third machine learning model including the
zone energy demand prediction data of each zone in
each building, the state information of the building
device, and physical information of each building as
input data.

14. The method of claim 13, further comprising:

acquiring state information of at least one community

device among a community load, a community distrib-
uted power supply, a community ESS, and a commu-
nity EV charging station, which do not belong to the
building in the community; and

generating community energy demand prediction data

through a fourth machine learning model including the
building energy demand prediction data of each build-
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ing, the state information of the community device, and
the physical information of the community as input
data.

15. The method of claim 14, further comprising:

managing the community energy demand prediction data 5

and a community demand reaction load capacity
including a building demand reaction load capacity of
each building and managing a community demand
reaction incentive policy applied to the community; and

generating a building demand reaction incentive policy to 10

be applied to each building through a community-
optimized machine learning model that includes the
building energy demand prediction data of each build-
ing, building energy usage data, and the community
demand reaction incentive policy as input data and 15
calculates a maximum community demand manage-
ment profit for the community.

16. The method of claim 15, further comprising generat-
ing a predicted value of the community demand manage-
ment profit through the community-optimized machine 20
learning model, receiving an actually measured value of the
community demand management profit from the community
agent, and learning the community-optimized machine
learning model based on error data according to a difference
between the predicted value and the actually measured 25
value.



